Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Josephs, Emily (Ed.)Abstract Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Parthenogenetic wasps provide an ideal natural experiment to study the heritability, plasticity, and microevolutionary dynamics of body size. Dinocampus coccinellae (Hymenoptera:Braconidae, Euphorinae) is a solitary, generalist braconid parasitoid wasp that reproduces through thelytokous parthenogenesis, and parasitizes over fifty diverse species of coccinellid ladybeetles worldwide as hosts. Here we designed an experiment with parthenogenetic lines of D. coccinellae presented with three different host ladybeetle species of varying sizes, across multiple generations to investigate heritability, and plasticity of body size measured via a combination of morphometric variables such as thorax width, abdominal width, and wing length in D. coccinellae. We expected positively correlated parent-offspring parasitoid regressions, indicative of heritable size variation, from unilineal (parent and offspring reared on same host species) lines, since these restrict environmental variation in phenotypes. In contrast, because multilineal (parent and offspring reared on different host species) lines would induce phenotypic plasticity of clones reared in varying environments, we expected negatively correlated parent-offspring parasitoid regressions. Our results indicate (1) little heritable variation in body size, (2) strong independence of offspring size on the host environment, (3) small mothers produce larger offspring, and vice versa, independent of host. We then model the evolution of size and host-shifting under a constrained fecundity advantage model of Cope’s Law using a Hidden Markov Model, showing that D. coccinellae likely has fitness advantages to maintain plasticity in body size despite parthenogenetic reproduction.more » « lessFree, publicly-accessible full text available March 18, 2026
-
Vogel, Kevin (Ed.)Abstract Here we describe a high quality genome assembly and annotation of the convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae). The highest quality unmasked genome comprises 619 Megabases (Mb) of chromosomal DNA, organized into 899 contigs, with a contig N50 score of 89 Mbps. The genome was assessed to be 96% complete (BUSCO). Reconstruction of a whole genome phylogeny resolved H. convergens as sister to the Harlequin lady beetle, Harmonia axyridis, and nested within a clade of several known agricultural pests.more » « less
-
Abstract Previous studies of Loggerhead Shrikes (Laniidae:Lanius ludovicianus) in North America have indicated considerable intraspecific genetic and phenotypic differentiation, but the congruence between genetic and phenotypic differentiation remains obscure. We examined phenotypic differences in beak shape and bite force among geographic groupings across a 950 km range, from the lower Imperial Valley to the upper Central Valley of California, USA. We integrated these analyses with a population genetic analysis of six microsatellite markers to test for correspondence between phenotypic and genetic differences among geographic groups. We found significant phenotypic differentiation despite a lack of significant genetic differentiation among groups. Pairwise beak shape and bite force distances nevertheless were correlated with genetic (FST) distances among geographic groups. Furthermore, the phenotypic and genetic distance matrices were correlated with pairwise geographic distances. Takentogether, these results suggest that phenotypic differences might be influenced by neutral processes, inbreeding (as indicated by high heterozygosity deficiencies we observed), local adaptation, and/or phenotypic plasticity.more » « less
-
Abstract Humulus lupulus L., commonly known as hops, is a perennial crop grown worldwide and is well known for its pharmacological, commercial, and most importantly brewing applications. For hundreds of years, hops have undergone intense artificial selection with over 250 cultivated varieties being developed worldwide, all displaying differences in key characteristics such as bitter acid concentrations, flavor and aroma profiles, changes in photoperiod, growth, and pathogen/pest resistances. Previous studies have individually explored differences between cultivars, aiming to identify markers that can quickly and cost-effectively differentiate between cultivars. However, little is known about their evolutionary history and the variability in their associated rhizospheric microbial communities. Coupling phenotypic, genomic, and soil metagenomic data, our study aims to explore the global population structure and domestication history of 98 hops cultivars. Additionally, we assessed differences in growth rates, rates of viral infection, usage of dissolvable nitrogen, and soil microbial community compositions between US and non-US based cultivars. Contrary to previous studies, our study revealed that worldwide hop cultivars cluster into four primary subpopulations; Central European, English, and American ancestry as previously reported, and one new group, the Nobles, revealing further substructure amongst Central European cultivars. Modeling the evolutionary history of domesticated hops reveals an early divergence of the common ancestors of modern US cultivars around 2800 ybp, and more recent divergences with gene flow across English, Central European, and Noble cultivars, reconciled with key events in human history and migrations. Furthermore, cultivars of US origin were shown to overall outperform non-US cultivars in both growth rates and usage of dissolvable nitrogen and display novel microbial composition.more » « lessFree, publicly-accessible full text available November 2, 2025
-
Abstract Conservation management to mitigate extinction of wildlife becomes more crucial than ever as global impacts due to anthropogenic activities and climate change continue to create devastation for species around the globe. Despite ongoing efforts to understand species constantly changing population dynamics due to anthropogenic stressors, there is a strong disconnect between conservation research and conservation policy, what is known as the “Conservation Gap”. The International Union of Conservation of Nature, the IUCN, is a globally recognized organization that works to sustain biodiversity by maintaining a ranking of species known as their Red List. However, the IUCN does not currently utilize genetic information to assess species conservation status despite the availability of molecular data. Here we use over 7300 studies collated from the MacroPopGen database, and over 450 published articles from the public repository DataDryad, focused on conservation and population genetics, sampling across a variety of invertebrate and vertebrate taxa, and using IUCN classifications to predict species endangerment using machine learning. Our models were able to accurately predict species threat level classified by the IUCN using both measures of genetic diversity and differentiation with IUCN assessment criteria. Our goal is to use these models to help determine and communicate conservation status to practitioners that takes into consideration all available species-specific information.more » « less
-
Abstract Understanding the genetic basis of adaptive evolution following habitat expansion can have important implications for pest management. The pink rice borer (PRB),Sesamia inferens(Walker), is a destructive pest of rice that was historically restricted to regions south of 34° N latitude in China. However, with changes in global climate and farming practices, the distribution of this moth has progressively expanded, encompassing most regions in North China. Here, 3 highly differentiated subpopulations were discovered using high‐quality single‐nucleotide polymorphism and structural variant datasets across China, corresponding to northern, southern China regions, and the Yunnan‐Guizhou Plateau, with significant patterns of isolation by geographic and environmental distances. Our estimates of evolutionary history indicate asymmetric migration with varying population sizes across the 3 subpopulations. Selective sweep analyses estimated strong selection at insect cuticle glycine‐rich cuticular protein genes which are associated with enhanced desiccation adaptability in the northern group, and at the histone‐lysine‐N‐methyltransferase gene associated with range expansion and local adaptation in the Shandong population. Our findings have significant implications for the development of effective strategies to control this pest.more » « less
-
Stewart, Frank J. (Ed.)ABSTRACT We describe the metagenome composition, community functional annotation, and prokaryote diversity in calcareous stromatolites from a dry stream bed of the San Felipe Creek in the Anza Borrego Desert. Analyses show a community capable of nitrogen fixation, assimilatory nitrate reduction, biofilm formation, quorum sensing, and potential thick-walled akinete formation for desiccation resistance.more » « less
An official website of the United States government
